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Learning-based Region Support for Stereo
Matching

Anonymous ECCV submission

Paper ID 000

Abstract. The application of convolutional neural network achieves
great success on the stereo matching. But most methods use neural net-
works in an implicit manner for stereo matching, which is difficult to
sovle a particular challenge such as occlusion or textureless areas. In this
paper, we propose the region support to explicitly handle these challenges
in stereo matching. The region support is an extension of the traditional
variable support, which is enhanced by a novel learning scheme. The
learning-based region support is obtained by a novel coarse-depth infer-
ence network i.e. the region support network which infers the depth from
a single image. In addition, we propose the improved cost computation,
cost aggregation, and refinement methods, which are reformulated by
region support.The final reformulated stereo matching pipeline reaches
remarkable performance both on speed and accuracy. The experiments
on SceneFlow and KITTI demonstrate the effectiveness of the region
support. The code and network settings will be published online later.

1 Introduction

Stereo matching is one of the most active research areas in computer vision
community. Currently, driven by the powerful neural networks, a lot of state-
of-the-art stereo matching methods are proposed [5, 6, 45]. But most of these
methods realize the stereo matching in an implicit manner, which means the
improvement is mainly due to the design of network architecture itself. Although
these methods improve the performance of stereo matching, they are hard to
determine the solution for certain challenges such as occlusion, textureless or
high-textured area and reducing search band in disparity space. The concept
of traditional variable support is proven effective to deal with these challenges
[1–4]. Taking the basic concept of variable support, in this paper, we propose
the region support to explicitly sovle the challenges in stereo matching.

There are two keys of variable support for stereo matching, which are the
determination of pixel sets and local relationships. For example, in cost aggrega-
tion, the two keys perform as determining pixel sets for each pixel to aggregate
with and computing the aggregation weights according to local relationship [2,
7]. As for cost computation and refinement, the segment-based cost computa-
tion aims to determine the best division of pixel sets and filtering-based refine-
ment tries to design filters which are able to describe the local relationship in
a suitable area [8–10]. The problem is that challenges for these three step are
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Disparity Map of 

Reference Image

Region Support

Cost 

Computation

Cost 

Aggregation
Refinement

Algorithm1 Algorithm2 Algorithm3

Annotation:

Region Support 

Network

Fig. 1. The input stereo image pair is fed to a region support network to generate
the region support r. The region support has three channel to help design the stereo
matching. With the region support, the three steps: cost computation, cost aggregation,
and refinement are reformulated by new strategies.

different, which makes the requirement for the two keys is inconsistent. Global or
semi-global stereo matching methods are always designed on explicit constraints,
where structural continuity are proven to be an effective constraint. To unify the
different requirements by the structual constraint, we present the region support
by an effective learning scheme which can infer structural information in dispar-
ity space.

To satisfy the requirements of all three steps, the region support propose new
hypotheses for the aforementioned two keys. For the pixels in the same pixel set,
pixels should share simialr disparity. Similarly, the local relationship should also
be described directly according to the disparity relationship. The traditional
determinations of these two keys are mainly based on the relationship of pixels
in RGB space. But this can lead to a failure because the pixels which share
similar colorful information are higly possible to have totally different disparity.
Based on these two hypotheses in view of disparity space, the reformulated
stereo matching method is able to leverage the region support as a coarse depth
guidance to effectively and efficiently realize the stereo task.

The region support is shown in Figure.1(a). To obtain this kind of region
support, we propose a novel neural network called the region support network
(RSN) which can extract the instructive information from disparity space. This
network takes a single image and generates the required region support. The
ground-truth of the training process for the region support is obtained only from
the original stereo disparity map according to the particular requirement from
the stereo matching. During the testing process, the stereo matching method
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with the region support only takes into the stereo image pair, which can be
treated as a coarse-to-fine strategy.

We reformulate the stereo matching method based on the region support.
To test the effectiveness of usages of the region support for different step, we
independently employ the region support in the three steps. By applying the
region support for all three steps, the final stereo matching method reaches
state-of-the-art results on SceneFlow and KITTI datasets.

The contributions of our work are two-fold:

– We propose a novel variable support called the region support for the stereo
matching. In addition, we leverage the region support to present a novel
stereo matching method with three reformulated steps.

– A novel deep neural network is proposed to obtain the region support. With
the region support, a novel learning-based stereo matching method is pre-
sented.

2 Related Work

2.1 The Variable Support for the Local Stereo Matching

The variable support is a classical concept in the stereo matching [1, 7], which
aims to determine the best set of pixels for the initialized matching result to
aggregate with. Most of these variable support cost aggregation methods can
be improved based on two different approaches. The former is allowing the set
of pixels to have unconstrained shape. To obtain flexible shape, some classical
works vary the window size and offsets or select more than one window [1, 11–13].
Meanwhile, some works use segment-based or cross-based methods to determine
the set of pixels [14, 10, 15]. The latter assigns adaptive or dynamic weights to
the pixels belonging to the set. Generally, the weights are computed based on the
color and spatial relationship among the pixels in the same set [16–19]. These
works demonstrate that the colorful and structural information in RGB space is
useful to express the relationship in disparity space in a way.

As for cost computation, a lot of methods can be seen as the continuation of
the variable support concept. The patchmatch and segment-based methods can
always be treated as the determination of the sets of pixels sharing potential dis-
parity [20, 9, 10]. Recent works using deep neural networks for cost computation
also can be seen as the application of the variable support, where the pixel sets
are determined by the receptive field of the networks and the weights are the
learnable filters [5, 21, 6]. The results of these works show that a suitable recep-
tive field is crucial to obtain the effective representation. A too large receptive
field may generate a representation which is indistinguishable for the similarity
measure, which can lead to a blurring result on edges. A too small receptive field
is hard to handle the textureless and occluded areas.

With the respect to refinement methods, the filtering based methods always
require a suitable filter setting, which can be inferred from the variable support
[8]. To remove the outliers in textureless areas, the variable support can offer the
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guidance to describe the local relationship among the same set. The methods us-
ing slanted-plane model always need a pre-defined pixel sets [22, 23]. Compared
to the randomized strategy like patchmatch, the segment-based or object-based
methods are proved to be more effective [23, 22]. But the determination is al-
ways based on the inference in the RGB space. Displet [24] propose to use the
estimation from disparity space, but the proposals are estimated based on the
pre-defined 3D model, which is limited the generalization of the estimation from
disparity space.

Global or semi-global stereo methods generally use energy function to iter-
atively optimize the stereo matching results [25–27]. The constraints in energy
function are always defined based on smoothness or continuity, where the struc-
tural or geometry information is crucial. The region information like segmenta-
tion and occlusion detection results are proven to be effective for the smoothness
constraint [28, 24].

In this paper, the determination of pixel sets and descriptor of local relation-
ship is reformulated by a learning-based scheme. In addition, without the strong
prior knowledge from pre-defined models, the learning process directly endows
the region support with geometry information from disparity space. With the re-
gion support, a novel learning-based stereo matching method is designed, where
all the three steps are reformulated by the region support.

3 Region Support for the Stereo Matching

3.1 Outline

In this section, we will focus on the discussion of specific requirement and em-
ployment of the region support. Eventually, the formulation of an effective region
support is acquired for the stereo matching. In the following subsections, we find
out requirements from all the three steps and figure out the commonness be-
tween them. In each subsection, we first determine the particular challenge to
deal with and propose the novel solutions with the help of region support. The
concrete realization of the region support will be discussed in Section. 4.

3.2 Cost Computation

Cost computation aims to generates a cost volume V from the reference image
R and target image T , in which the element represents the matching cost of
corresponding pixels. The whole process can be expressed as

V (w, h, d) = f(R(w, h), T (w − d, h)), (1)

where the f indicates the cost computation function and w, h, d donates the
position of the cost volume.

There are mainly two challenges in this process. The former is to gener-
ate a powerful representation for the pixels. The later is to design an effective
similarity measure. Driven by the powerful representation from the deep neural



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#000
ECCV

#000

ECCV-18 submission ID 000 5

Algorithm 1: Cost Computation

Input: Support Regions r0,Local Relationship Matrices r1, Edges r2

Output: Initial Cost Volume V i

1 Step1:Generation of r from the region support netowrk(RSN)

2 r0,r1,r2= RSN(R)
3 Step2:Pre-Matching

4 d0= match(r0)
5 Step3:Representive Pixels

6 e,o= select(r0,r2,d0)
7 Step4:Feature Extraction from Siamese Network
8 F (e), F (o) = siamese(e, o)
9 Step5:Matching Cost Computation

10 V i=f(F (e)),f(F (0))

networks, the former challenge is highly resolved [6, 29, 30]. But it is still difficult
to judge whether the view field is suitable. As for similarity measure, the widely
used cosine distance reaches an efficient result [5, 21]. Using networks as similar-
ity measure raises the accuracy but cut down the speed. In addition, the high
computational burden of cost volume greatly limits the whole stereo matching
method.

Requirement for Region Support To handle the aforementioned problems,
we propose the region support to guide the cost computation process. First,
it offers a more economical form to storage the matching results. Compared
to the slanted plane based methods [23, 22], each pixel set i.e. support region
determined by the region support consists of pixels at the similar disparity. As a
result, we are able to just compute a subset of each pixel set. Then, it handles the
view field problem by an additional division of pixels. For the pixels at the edges,
the small view field is required, which is because a large view field will lead to a
blurring matching result. In contrast, the pixels at textureless areas need a large
view field, so it can capture the supportive information of objects. The region
support divides these two-class pixels and feeds them to different neural network
with different view field. Finally, it improves the similarity measure. Based on
the cosine distance, the region support offers a local relationship descriptor for
each pixel, which can be used as an additional local feature to enhance the deep
feature.

Reformulation by Region Support The process of cost computation is
shown in Algorithm.1. We first divide the reference image into support regions.
Then, we generate representative pixels for each support region as the candidate
subset for cost computation. This operation will lead to a sparse matching cost
result, while the dense disparity is obtained in the refinement part of Section.3.4.
Before generating the representation, we pre-match support regions to obtain a
coarse region disparity. The pre-matching algorithm carries out using a template
based shift matching. We shift each support each on the image to find the best
matching one according to the rate of overlapping areas. Then this region dis-
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Algorithm 2: Cost Aggregation

Input: Local Relationship Matrices r1, Two Set of Pixels e, o,Cost Volume V i

Output: Cost Volume V a

1 while d < D do

2 V d = V i(, , d)
3 for t in [e, o] do
4 for p in t do
5 %Deternime Related Pixels by a Selection function select based on r1

6 P = select(p, r1)

7 V d(p) = A(p, P ) � V d(P )

8 end

9 end

10 end

parity is used to construct the corresponding pixels, which can highly reduce the
search space. The matching pixel pairs at edge i.e. e and among objects i.e. o
are fed into different networks to obtain the representation. Finally, we propose
a novel similarity function f to compute the matching cost, which is expressed
as

f(w, h, d) = cos(F (R(w, h)), F (T (w − d, h)))

+‖U(R(w, h))− U(T (w − d, h))‖1,
(2)

where F is the representation generation method and U is the local relationship
descriptor.

3.3 Cost Aggregation

For each pixel on the cost volume, cost aggregation method aggregates the cost
value of pixels related to this pixel with adaptive weights. Most methods deter-
mine the related pixels and adaptive weights on the basis of RGB space [31, 2,
15]. These methods assume that pixels which are similar in RGB space are also
similar in disparity space. For some simple situations, this hypothesis reaches
sufficient performance, but on high-texture areas, this can lead to a failure. In
addition, the determination of related pixels and adaptive weights are highly
computational expensive.

Requirement of Region Support Traditional hand-designed variable sup-
port cannot offer guidance from the disparity space, therefore, a learning mech-
anism is indispensable to infer the information in disparity space. With the
region support, we simply employ the classical strategy for cost aggregation.
But aggregating with all related pixels for each pixel brings into the redundant
computation. As we have discussed above, the region support generates repre-
sentative pixels and local descriptor. We can just conduct the aggregation on
the representative pixels to reach a sufficient performance. It is worth pointing
out that for most cost aggregation methods, we only focus the two-dimensional
cost aggregation which is based on the fronto-parallel. In summary, the region
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support determines the related pixels with unconstrained shape and adaptive
weights for the cost aggregation.

Algorithm 3: Refinement

Input: Local Relationship Matrices r1, Edges r2, Pixel Sets e, o,Initial Disparity Map W i

Output: Disparity Map W r

1 Step1:Remove Outliers

2 V d = V i(, , d)
3 for p in [e + o] do
4 P = select(p, r1)

5 if
∣∣W i(p) − average(W i(P ))

∣∣ > thres then

6 W i(p) = 0
7 end

8 end
9 Step2:Determination of Unmeasured Pixels

10 er = near(e), or = near(o)
11 Step3:Interpolation
12 for p in er do
13 P = nearest4(p, r1, r2)

14 W i(p) = bilinear(P )

15 end
16 for p in or do
17 P = nearest2(p, r1, r2)

18 W i(p) = bilinear(P )

19 end
20 Step4:Final Refine
21 for t in [er, or] do
22 for p in t do
23 P = nearest4(p, r1)

24 W i(p) = average(P )

25 end

26 end

Reformulation by Region Support The cost aggregation with the region
support is shown in Algorithm.2. The cost aggregation is applied iteratively
along the depth(D) dimension, which means we conduct the two-dimensional
cost aggregation D times for each support region. The cost aggregation is only
applied to the representative pixels of support regions. The adaptive weights are
computed based on the region support, which can be shown as

A(x, x) = 1− λ
∥∥∥r1(x)− r1(x

′
)
∥∥∥

1
, (3)

where x and x
′

represent the pixels need to aggregate with and the λ is defined
by

λ =


∣∣∣r1(x)− r1(x

′
)
∣∣∣ if r0(x) = r0(x

′
) and r2(x) = r2(x

′
)

0.3×
∣∣∣r1(x)− r1(x

′
)
∣∣∣ if r0(x) = r0(x

′
) and r2(x) 6= r2(x

′
)

0 if r0(x) 6= r0(x
′
)

(4)
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3.4 Refinement

The refinement methods generally use filtering, left-right (L-R) check and inter-
polation to reach the accurate sub-pixel level disparity map. The filtering based
methods use a static geometry distribution to remove outliers. The interpolation
methods or slanted plane methods infer the linear relationship in disparity space.
The key of refinement method is to adequately infer the underlying relationship
in disparity space.

Requirement of Region Support Because of the proposed cost computa-
tion method, the obtained disparity map is in a sparse form, which requires an
interpolation method to obtain the dense disparity map. For RGB images, the
interpolation needs to ensure the smoothness and continuity at the same time
keeping the high-textured areas. As for disparity images, the variation depth is
much more straightforward and the inference can be generally summarized into
two situations. The former is the pixels among object i.e. o, where the depth
variation is continuous in all directions. The inference based on distance mea-
sure can ensure a continuous and smooth performance. The latter is the pixels
at edges i.e. e, where obtaining the direction of the edges and the related pix-
els is crucial because continuity is only kept along the direction of edges. The
spare form solves the occlusion problem in a way because even the pixels are
occluded, the continuity remains locally. In addition, the region support removes
the outliers before interpolation by the local relationship.

Reformulation by Region Support The operation of refinement is shown in
Algorithm.3. We first remove the outliers according to the local relationship from
the region support. Then we separately carry out interpolation following e and o.
For the unmeasured pixels related to e, we find the four nearest measured pixels
to interpolate the value. For the other unmeasured pixels, we simple interplate
the value by the two nearest measured pixels on the horizontal direction. Finally,
we refine the interpolation value by averaging each pixel with the four nearest
measured pixels.

4 Region Support Network

4.1 Formulation

From the discussion of the last section, we can see the inference in disparity
space is crucial for the region support, which is extremely difficult to achieve
by hand-designed manner. In this paper, we propose a region support network
(RSN) to learn the required region support.

The region support needs to determine the support regions in which pixels
share similar disparity. In addition, the region support divides the pixels into
two classes: the pixels at edges and the pixels among the object. Besides, the
region support generates a local descriptor for each pixel.
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The proposed network is presented in Section.4.2. The RSN takes the ref-
erence and target image separately and generates the region support for both
images. To equip the support regions with the required attributes, we propose a
novel loss function shown in Section.4.4.

Conv

ResNet

Dilated Pooling

…
…

Conv

Conv

Pooling

Conv

Input Image

Concatenate

Stacked Pyramid Layer

Region Support

…
…

… …

Conv

Fig. 2. The Support Region Network. First, we extract features from a residual network
and dilated network. Then the sub-sampled feature maps are fed into a stacked pyramid
layer to extract multi-scale features. After that, the up-sampling and concatenating
operation is employed to get the final feature map. Finally, several convolutional layers
with softmax function are employed to get the region support.

4.2 Region support Archetecture

The overview of the region support network is shown in Fig.2. First, we use
a residual network [32] to extract the local feature for each pixel with original
resolution. Then we use dilated strategy to obtain a larger view field for the
feature map [33, 34] and meanwhile reduce the resolution to 1/4. After that,
we use a stacked pyramid network [35] to conduct the inference in disparity
space. The obtained local feature map is sub-sampled into six resolution level of
1/16, 1/32, 1/64, 1/128, 1/256 and 1/512 by an average pooling operation. Ac-
quired with the feature map with different resolution, we use a bilinear inter-
polation operation to up-sample all the feature into original resolution. After
fixing the resolution problem, we concatenate all the feature maps and feed the
concatenated feature map through two convolutional layers to get the final deep
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representation for the region support. The layer setting is shown in Supple-
mentary Material.

The output of the region support network is r, which has three channels.
The first channel is the index for support regions. To obtain this prediction,
the representation is fed to a softmax function to get the classification result.
Before the softmax, a 1*1 convolutional layer is applied to adjust the channel
number. The second is the detailed classification in a certain support region,
which indicates the local relationship. We separately apply 1*1 convolutional
layer with softmax function for each support region determined by channel one.
The third channel donates whether the pixel is at the edge. We add the results
of channel one and two to form the initial region support. Then we apply three
convolutional layers with an additional three-class softmax to determine the
edges at support regions, edges among support regions and others.

4.3 The Stereo Matching Network With Region Support

Using the algorithms proposed in Section.3, we conduct the whole stereo match-
ing with the learning-based region support. We reuse the residual network of the
region support network to extract the feature for stereo matching by a siamese
structure. The input is a pair of patches which is centered at the representative
pixel determined by the region support. The cost aggregation is independently
carried out following the order of support regions. Before the refinement, we
use a soft-argmin strategy [6, 30] to compute the disparity value. After that,
we gain a sparse disparity map, and then the final refinement is carried out by
the proposed interpolation operation on the sparse disparity map. The detailed
implementation is shown in Supplementary Material.

4.4 Training

The training process of our stereo matching method is achieved separately by
training the proposed two networks. First, we train the region support network
with a novel supervised joint loss function:

LS = LR + Lr + LE , (5)

LR =
1

N

N∑
n=1

ˆ

r0
n log(r0

n), (6)

Lr =
1

S

S∑
s=1

1

M

M∑
m=1

ˆ

r1
m log(r1

m), (7)

LE =
1

N

N∑
n=1

ˆ

r2
n log(r2

n). (8)

rn represents the computed the region support and the
ˆ
rn represents the ground-

truth for training. The N represents the number of pixels of the whole image, S
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represents the number of support regions and M represents the number of pixels
among a particular support region.

After obtaining the region support, we hold still the region support network
and train the proposed stereo matching method simply by a regression loss,

LD =
1

N

N∑
n=1

∥∥∥∥dn − ˆ

dn

∥∥∥∥, (9)

where dn indicates the disparity of the pixel. During this training process, the
region support is obtained from the ground-truth of the region support. In the
end, we jointly train the whole stereo matching method by LS +LD by replacing
the region support by the result from the region support network.

5 Experiments

Disparity Map Region Support Support Regions EdgesLocal Relationship

Fig. 3. The region support in SceneFlow and KITTI. The first two rows are the region
support in SceneFlow. The Third row is the region support in KITTI. We compare the
region support with the disparity map, we can see the region support network actually
infers the information in disparity space. The support regions, local relationship and
edges are the three channels of region support, which are the reuqired instructive
information for the stereo matching.

In this section, we persent qualitative and quntitative results to demonstrate
the effectiveness of the region support. Firstly, in Section.5, we show the con-
struction of the region support from disparity map, which provides the ground-
truth to train the region support network. In Section.5.2, we compare the results
of our approach with the state-of-the-art methods on KITTI [36, 37] and Scene-
Flow [38]. Finally, we figure out the effectiveness of the region support for each
steps in Section.5.3

The proposed the region support network and stereo matching method are
implemented by PyTorch [39]. All models are trained by the Adam Optimiza-
tion[40]. The learning rate is initialized by 0.01 and reduce by a half after each
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Table 1. Comparisons on the SceneFlow

Method > 1px > 3px > 5px EPE Param. Time(ms)

SceneFlowNet [38] – – – 7.87 – 60
MC-CNN-fst [44] – – – 10.12 – 800
SGM [25] – – – 23.01 – 1100
GC-Net [6] 16.9 9.34 7.22 2.51 3.5M 950
iResNet [45] 9.28 4.57 3.32 2.45 43.34M 148

Ours 10.26 4.93 3.02 2.37 2.7M 112

epoch. We train the region support network with batchsize 1. All of the images
are normalized into 0-1 intensity. For each dataset, we train 8 epoches for the re-
gion support network, 5 epoches for the stereo matching network and 2 epoches
for the joint training. The training of KITTI dataset uses the pre-trained model
on the Driving dataset. The detailed setting of network and hyper-parameter
setting are shown in Supplementary Material.

5.1 Training Data Preparation

The obtained region support is shown in Fig.3. The region support has three
channels, which are support regions, local relationship, and edges. These three
instructive guidances are required by the stereo matching methods. Since the
region support is learning-based, for the training purpose, we extract the region
support from the disparity map. During training, the obtained region support
from disparity is used as the ground-truth of the RSN and the initial region
support for the stereo matching network. After training the region support net-
work, we replace the region support for stereo matching with the learned region
support from the RSN.

To obtain the ground-truth, we extract the region support The first channel
is the support regions, each of which is consisted of pixels in similar disparity. We
apply the Felzenszwalbs efficient graph-based segmentation [41] to the disparity
map to obtain the initial support regions. After that, we apply an aggregation
operation between the regions according to the disparity continuity. Then we
divide the aggregation results into 32 sets according to the average disparity,
which is the final support regions. The second channel is the local relationship.
It is the combination of the results of original Felzenszwalbs segmentation and
Sobel edges detection [42]. The third channel is the edges in disparity space,
which is obtained by the canny edge detection and Sobel detection [43].

5.2 Benchmark Results

We test our stereo matching method on two datasets: SceneFLow [38] and KITTI
[36, 37]. The SceneFlow is a synthetic dataset which consists of three datasets
Driving, FlyingThings3D and Monkaa. These three datasets are constructed in
different scenes. The Driving dataset is a mostly naturalistic street scene from
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Table 2. Comparisons on the FlyingThings3D

Method 3PE EPE Param. Time(ms)

CRL [46] 6.20 1.32 78.77M 162
SGM [25] 12.54 4.50 – –
MC-CNN-fst [44] 13.70 3.79 – –
iResNet [45] – 1.4 43.34M 90
SceneFlowNet [38] – 2.02 – 60
Ours 4.79 1.24 2.7M 112

Table 3. Comparisons on KITTI2012

Model >2px > 5 px Mean Error Time(s)
Non-Occ All Non-Occ All Non-Occ All

PSMNet 2.44 3.01 0.90 1.15 0.5 0.6 1.3
GC-Net [6] 2.71 3.46 1.77 2.30 0.6 0.7 0.9
SegStereo 3.24 3.82 1.10 1.35 0.6 0.6 0.6
Displets v2 [24] 3.43 4.46 1.72 2.17 0.7 0.8 265
L-ResMatch [29] 3.64 5.06 1.50 2.26 0.7 1.0 48
MC-CNN [44] 3.90 5.45 1.64 2.39 0.7 0.9 67
iResNet-i2e2 [45] 2.69 3.34 1.06 1.32 0.5 0.6 0.12

Our model 2.70 3.23 1.07 1.27 0.5 0.6 0.18

the viewpoint of a driving car, made to resemble the KITTI datasets. It has
8830 training images which we use to analyze the effectiveness of region support,
and the results are shown in Table.5. The average evaluation on SceneFlow is
shown in Table.1.We compare with SceneFlowNet [38], GC-Net [6], iResNet [45]
and MC-CNN [44], where we reach the best performance on 5px error rate
and endpoint error(EPE) with the smallest model parameter. The evaluation of
FlyingThings3D is shown in Table.2. Comparing to CRL [46], iResNet [45]and
SceneFlowNet [38], where we reach the best performance on EPE and 3PE. The
endpoint-error(EPE) is the average Euclidean distance between the prediction
and ground-truth and the three-pixel-error(3PE) is the percentage of EPE value
more than 3 [46].

The KITTI dataset is the real scene dataset on a driving car. The KITTI
dataset contains 194 training and 195 testimage pair consist of images of chal-
lenging and varied road scene obtained from LIDAR data. We use the pre-trained
model on Driving dataset and fine-tune on KITTI to obtain the final model. The
comparation with GC-Net [6], PSMNet, SegStereo, iResNet-i2e2 [45], MC-CNN
[44], Displetv v2 [24] and Kandao are shown in Table.3 and Table.3. From the
evaluation, we can see the proposed method reaches the state-of-art performance
both on KITTI2012 and KITTI2015.

5.3 Effectis Analysis

To evaluate the effectiveness of the proposed three algorithms of region support,
we separately test them on the Driving dataset. The result is shown in Table.5.
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Table 4. Comparisons on KITTI2015

Model All pixels Non-Occluded Pixels Time(s)
D1-bg D1-fg D1-all D1-bg D1-fg D1-all

GC-Net[6] 2.21 6.16 2.87 2.02 5.58 2.61 0.9
MC-CNN[5] 2.89 8.88 3.89 2.48 7.64 3.33 67
Displetv v2[24] 3.00 5.56 3.43 2.73 4.95 3.09 265
PSMNet 1.86 4.62 2.32 1.71 4.31 2.14 0.41
SegStereo 2.16 4.02 2.47 2.01 3.62 2.28 0.6
iResNet-i2e2[45] 2.10 3.64 2.36 1.94 2.55 2.15 0.1
Kandao 2.14 3.45 2.36 1.98 2.92 2.14 0.22

Our model 2.11 3.51 2.34 1.92 3.23 2.15 0.18

Table 5. Analysis on SceneFlow Driving dataset

RSN Cost Computation Cost Aggregation Refinement EEP 3PE Time(ms)

×
√ √ √

7.32 11.56 48√ √
× × 14.37 3.74 97√

×
√

× 13.70 6.72 103√
× ×

√
16.32 2.96 105√ √ √ √
9.77 8.61 112

We firstly use the region support obtained from ground-truth for the stereo
matching, which reaches a significant performance both on speed and accuracy.
Then we use RSN to provide the region support and test the effectiveness of
the region support by separately applying the proposed algorithms. From the
results, we can see that the application for cost computation can highly reduce
the computational time. Applying for cost aggregation can lead to a low EPE
which means a fine result in detail, while the application for refinement leads to
a more smooth effects on disparity map.

6 Discussion

The region support significantly improves the stereo matching. We can see the
reformulated pipeline gains a sufficient speed on computation, it should be no-
ticed that the limitation of computational time comes from the region support
network. During training, using the region support from ground-truth can lead
an impressive speed with low computation requirement. The strategy to use
region support is general even without the region support network. For exam-
ple, the algorithm applied to compute ground-truth from disparity can also be
employed to the sparse laser data, which we test on KITTI. Then the region
support can be used as the fusion of laser data and stereo matching results. In
the future, we will find a more effective region support network to speed up the
determination of region support. Besides, we will find out the more general and
effective usages of the region support not only for the stereo matching but also
for other applications.
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7 Conclusion

In this paper, we presented the region support for stereo matching. The region
support was designed to handle particular challenges existing in different stereo
matching steps. And we presented an effective solution to obtain the region
support, which was built based on the commonness of these requirements to deal
with the challenges. With the proposed region support, a novel stereo matching
pipeline was reformulated in an effective an efficient manner. In addition, we
proposed the region support network to generate the desired region support for
stereo matching. The network was able to conduct the inference in disparity
space and provided coarse-depth guidance for stereo matching. Furthermore,
this network was also shown the ability for the geometry inference in disparity
space.
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